A 99mTc-Labelled Tetrazine for Bioorthogonal Chemistry. Synthesis and Biodistribution Studies with Small Molecule trans-Cyclooctene Derivatives

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 99mTc-Labelled Tetrazine for Bioorthogonal Chemistry. Synthesis and Biodistribution Studies with Small Molecule trans-Cyclooctene Derivatives

A convenient strategy to radiolabel a hydrazinonicotonic acid (HYNIC)-derived tetrazine with 99mTc was developed, and its utility for creating probes to image bone metabolism and bacterial infection using both active and pretargeting strategies was demonstrated. The 99mTc-labelled HYNIC-tetrazine was synthesized in 75% yield and exhibited high stability in vitro and in vivo. A trans-cyclooctene...

متن کامل

Mechanism‐Based Fluorogenic trans‐Cyclooctene–Tetrazine Cycloaddition

The development of fluorogenic reactions which lead to the formation of fluorescent products from two nonfluorescent starting materials is highly desirable, but challenging. Reported herein is a new concept of fluorescent product formation upon the inverse electron-demand Diels-Alder reaction of 1,2,4,5-tetrazines with particular trans-cyclooctene (TCO) isomers. In sharp contrast to known fluor...

متن کامل

Conformationally Strained trans-Cyclooctene with Improved Stability and Excellent Reactivity in Tetrazine Ligation.

Computation has guided the design of conformationally-strained dioxolane-fused trans-cyclooctene (d-TCO) derivatives that display excellent reactivity in the tetrazine ligation. A water soluble derivative of 3,6-dipyridyl-s-tetrazine reacts with d-TCO with a second order rate k2 366,000 (+/- 15,000) M-1s-1 at 25 °C in pure water. Furthermore, d-TCO derivatives can be prepared easily, are access...

متن کامل

Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition.

There is considerable interest in the use of bioorthogonal covalent chemistry, such as “click” reactions, to label small molecules located on live or fixed cells. Such labeling has been used for the visualization of glycans, activity-based protein profiling, the site-specific tagging of proteins, the detection of DNA and RNA synthesis, investigation of the fate of small molecules in plants, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2016

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0167425